A METHOD OF INVESTIGATION OF THE STRENGTH IN RENHEG :N THE HORIZONTAL TAANE OF AN AFDE WHEN SUBJECTED TO LATERAL WIND, CURRENT, OR WAVE FORCES

EDWARD M. SAUNDERS AND

WALTER W. YANDERWOLK, JR.

Library
U. S. Naval Postgraduate School Annapolis, Md,

```
            A METHOD OF INVESTIGATION
                    of the
                        STRENGTH IN BENDING
                            IN THE
        HORIZONTAL PLhNE
        of an
AFDB WHEN SUBJECTED TO LATERAL WIND, CURRENT,
        OR WAVE FORCES
            Submitted to the Faculty of
            Ronsselaer Polytechnic Institute
in partial fulfillment of the requirements
            for the Degree of
            Master cf Sivil Engineering
                by
            Bdward M. Saunders
    "u:A *".VVander`olk, jr.
            Troy, New York
            September, }194
```

$$
\begin{aligned}
& \text { Thesis } \\
& 52
\end{aligned}
$$

TABLL UF CONTANS

Foreword
Introduction
Applying the Catenary to the Problem 1
The 'Vind Loading 9
Determination of Chain Reactions 15
The Loaded Structure 27
Conclusions and Recommendations 32

INTRODUCTION

The conclusion of "Vorld War II in 1945 left the Navy Department with the problem of kecping large numbers of ships in carctaker status. Among the largest of these vessels are the battleship type floating drydocks, eight hundred and twonty-seven feet in length. Somo of these docks are moored in typhoon areas and future operations may require the service of these vessuls in areas where high wind vulocitios may bc expected.

Past investigations of the mooring problem involving this type of floating structure have not been exhaustive, due to the complicatod nature of the problom, and because the moorings used have proved adequatc. There has been concern, howevor, as to the safety of thesc moorings undor ?ireme conditions of wind and sea. The highest wind volocities expericnced by a vosscl of this typo occurred during a storm with wind volocities variously reported from 70 to 90 milcs per hour. In anothor storm with winds at 120 milcs per hour, several docks of a smaller type were lost. The possibility of the loss of a larger dock, built at a cost of $30,000,000$ e points to the advisability of a moro refined method of analysis.

The flexural strongth of a larige dock when subjectod to lateral loads, such as those resulting from wind, curront, or wavo forces, has never bcon investigated, according to cognizant enginoors of tho Bureau of Yards
and Docks. The arrangoment of tinc basic mooring systom for those docks tends to cause bending moment, and rosulting flexural stresses, under the action of these lateral loads. The object of this study is to develop a muthod of determining the loads in the horizontal planc, calculating the rosulting shears ind moments and determining the approximate stresses resulting therefrom, having given the distribution of wind, current, or wave forces and having given a specific mooring plan. At the time of writing, the only available data on load distribution involve wind only. Studies at the David Taylor Model Basin at 'Vashington, D. C. will produce further data on force distribution from model tests.

Since the reactions of the mooring chains are as important a part of the loading as the external forces on the system, a method of determining these roactions consistent with the actual physical conditions had to be doviscd.

APPLYING THE CATENARY TO THE PROBLEM

Any moored object, when subjected to a displacing force, moves in a direction determined by both the force itself and the restraining action of the mooring chains. This displacement causes the catenary of the mooring chain or chains to alter so as to provide an additional restraining force, and thereby restore equilibrium. With a small number of chains, the problem of evaluating the forces exerted by the chains would be simply solved by applying the mathematical equation of a catenary. However, the solution for a floating object held by a large number of chains, such as a floating rrydock, requires special treatment. Reference to the general plan, Figure 1, chows that the specific example used in this study is a ten section battleship type floating drydock moored by means of thirty two chains arranged in opposing pairs. An assumption of the analysis used to determine the chain reactions, to be discussed in a different section, is that the same deflection will be experienced by both chains in any one pair. That is, if the end of chain $L-1$, which is fastened to the dock, moves twenty feet
forward, the end of chain $L-2$ also moves twenty feet forward. If d-? moves twenty feet to port, d-l also moves twenty feet to port. This assumption, in effect, disregards the effect of rotation of the dock, which would cause different displacoments in any one pair. The error caused varies as the versine of the angle of rotation, and for small angles the versine is nearly zero. These pairs, then, may be considered to act as a unit. Each chain has its force-displacement characteristic, and the characteristics of the two chains may be combined to produce the characteristic for the pair. The basic formula of a catenary is:

$$
\begin{align*}
y= & \frac{H}{w}\left(\cosh \frac{w x}{H}-I\right) \tag{1}\\
& \text { from which, } \\
s= & \frac{H}{w} \sinh \frac{w x}{H} \tag{2}\\
& \text { and } \\
T= & H+w y \tag{3}
\end{align*}
$$

where:

> y is the vertical distance from the point where the tangent line to the chain is horizontal to the point in question,
> H is the horizontal component of the tension at any point on the catenary,
> w is weight per foot of the chain,
x is the horizontal distance from the point where the tangent line to the chain is horizontal to the point in question, and
T is the tension in the chain at the point y, all expressed in consistent units.

If a force F be applied to the pair of catenarys shown in Fig. 2, they will deflect a distance x. The two catenaries have each a different horizontal component of tension and catenarys of different shapes.

If one of these catenaries be detached and a forcedisplacement characteristic found, that for the combination may also be found. Referring to Figure 2, a chain is laid on the bottom in y feet of water, and one end is brought to the surface. Position $C D$ represents zero displacement and zero force in the horizontal. Position $A B$ represents x displacement, x^{\prime} abscissa of tho catenary, and H horizontal force.

Let w be unity, causing the expression H / w to be simply H. Let the horizontal distance from the point on the catenary in question to the point where the tangent to the chain is horizontal be designated by x^{\prime}

Then:

$$
\begin{align*}
y= & H\left(\cosh \frac{x^{\prime}}{H}-1\right) \tag{4}\\
& \text { and } \\
s= & H \sinh \frac{x^{\prime}}{H} \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
T=H+y \tag{6}
\end{equation*}
$$

from (1), (2), and (3). It is obvious that should w be other than unity, the equations (4), (5), and (6) may still be utilized, the final horizontal force and tension being the horizontal force and tension obtained by these equations multiplied by the weight of chain per foot.

To find values of x^{\prime} and H, the following procedure is used:

1. Assign an arbitrary value to x^{\prime} / H.
2. Determine H from $H=y /\left(\cosh x^{\prime} / H-1\right)$. y, the dopth of wator, is known.
3. Having H, determine x^{\prime} from $x^{\prime}=\left(x^{\prime} / H\right)(H)$. This procedure is necessary because x^{\prime} / H must be used as a type of parameter, $\cosh \mathrm{x}^{1 / H}$ appearing in the expression.
4. Let $A D$ be designated $\Delta s . s=y+\Delta s$, both sides of the equation representing the distance from the point B to the end of the chain. Therefore, Δs is equal to s less y, or:

$$
\begin{equation*}
\Delta s=H\left(\sinh \frac{x^{\prime}}{H}-\left(\cosh \frac{x^{\prime}}{\bar{H}}-1\right)\right) \tag{7}
\end{equation*}
$$

5. From the figure, x may be found by taking Δs from x^{\prime}.
6. T is H plus y.

These six steps may conveniently bo arranged in a tablo, the procedure which is followed in the discussion. After the results are tabulated, they are plotted on a graph, horizontal force and tension against displaccment of the upper end of the chain.

In order to obtain numerical results, y, the depth of water, must be established. Operating conditions for the type of dock studied require a minimum depth of eighty feet to allow submergence to receive the ship to be docked. ${ }^{1}$ A depth of ninety feet has been selected for this discussion. Table 1 contains the computations for H and T in terms of x for this depth.

Discussion with engineers of tho Jureau of Yards and Docks of the Navy Department indicated that a length of chain of seven hundred feet from the edge of the deck to tho anchor wouli be a representative length used in a depth of ninety feet. That length is used in this discussion.

It will be observed that a value of x^{\prime} / H of 0.259 gives a length of catenary of $2670 \times 0.2619=699$ feet. At this point, the chain is just ceasing to be tangent to the bottom. The origin of the curve will then no longer lie on the bottom, but will fall to some point below the bottom, and the relationships used are no longer true.

1 Frederick R. Harris, Inc., "Operating Manual, Battleship Dry Dock"

When this occurs in this case, x has a value of 82 feet. The zeometry of the mooring is such that when the chain is in a straight line, giving H and T values infinite in size, x is 85 feet. Should the chain be infinite in lenjth, the value of ($\mathrm{X}^{\prime} / \mathrm{H}$) approaching zero, the x distance will be ninety feet.

Figure 4 shows horizontal force and tension plotted as a function of the x distance. The dotted curve from $82+0$ 90 feet is the curve ontained from the calculations. Tho solid curve from 82 to 95 feet is obtained by leavin's the calculated curve at the 82 foot point with a curve tangent to the orisinal curve at that point and asymptotically approaching infinity at 85 feet. Inspection of the curves will show that the possibility of error from this procedure is slight in the ran 82 to 83 feet, considering the relative accuracy of points plotted in that steep portion of the curve.

When a mooring is laid in the field, an initial tension is put on the chains. This initial tension prevents the dock from drifting about within the mooring area. Experience In the field has shown that a tension or ten thousand pounds is attainable with the standard equipment used for moorins the vessel.

Then two chains having the characteristic such as Piçure 4 are cornected to the dock to form a pair, Fizure 3, the pair is exerting no force on the dock in the hori-
zontal direction, each chain has the same value of initial tension, since the horizontal forces exerted by each are equal and opposite, and the wei fht per foot of chain is the same for both chains. The tension existing in both chains of this system is the initial tension which is attainable in practice, about 10,000 pounds. In order to correlate this tension with the tension characteristic obtained for the chain weighing one pound per foot, the weisht per foot of the chain under study must be determined. The chain for the standard mooring of this dock is $3^{\prime \prime}$ cast steel chain, which weighs 72.5 pounds per root, submerged in sea water. If the chain weighing 72.5 has a tension of 9750 pounds, the chain weighing one pound per foot has a tension of $9750 / 72.5=134.5$ pounds. Referring to Figure $\{$, horjzontal displacement against tension and horizontal fone for a single chain, a chain weighing one pound per foot with a tension of 134.5 pounds has a displacement of 42 feet. It follows that a chain weighing 72.5 pounds per root with a tension of 9,750 pounds also has a displacenent of 42 feet. Although the pair of two chains exerts no resultant horizontal force, each chain is displaced from the zero position a distance of 42 feet. It is now possible to obtain the characteristic of this pair of chains. Reforring to Figure 3 , if the system is displaced x fect to the right, the chain A has a dis-
placement of 42 plus x feet, with a corresponding force H_{1}, and chain B has a displacement of 42 minus x feet, with a corresponding force H_{2}, read from the characteristic of one chain. The force, F, corresponding to this displacement is H_{1} minus H_{2}. For example, when x equals 20 fect, chain A has a displacement of 62 feet, and chain 3 has a displacement of 22 feet; H for chain A is 183 pounds and f for chain B is 11.3 pounds. F for x equals 20 feet is 172 pounds.

In this manner, the data for Figure 5, the plot of horizontal force azainst displacement of a pair of chains weighing one pound per foot with an initial tension of 134.5 pounds in ninety feet of wator, is obtained. At a displacement of 43 feet, chain A has a displacement of 85 feet, wizh a resulting horizontal force of infinite ఇฉgnitude. Irergirre, the curve approaches the 43 foot abscissa asymptotically. Table 2 shows the computation used in obtaining this curve.

The method used in finding chain reactions requiros a plot of the first derivative of the horizontal force vs. displacement curve. This was obtained by measuring the slope of the curve and taking the tangent of the angle, multiplying by the scale of the plot.

Throughout the remainder of this discussion, the term "x" shall refor to displacement of pairs of chains, as shown in Figuro 3, and not tho displacement of a single chain, as shown in Figure 2.

THE WIND LOADING

It is intended that this method of analysis be adaptable to any type of horizontal loading, as long as that loading can be converted to transverse and longitudinal forces and yawing moment. There is the additional qualification, however, that the distribution of tne load along the dock nust be known. It might be assumed that the knowledge of the total forces might be sufficiont to enable determination of the chain reactions, and therefore the moment produced in the dock structure; but it would be necessary in that, case to assume an arbitrary load distribution in order to determine shear and bending moment in the dock. Th\% wind distribution curves used in this study wern acion ioci as the most representative available in tho absurit c: actual experimental results.

It is anc:rpated that experimontal data will be obtained in the fourire by the Bureau of Yards and Docks, which will provide more accurate load distribution curves for wind and current forces. Tho wind pressure distribution curves of Figure 6 were obtained after consultation with i'r. A. Amirikian of the Bureau of Yards and Docks. They represent the ajisrojate results of several years of oxtensive rosearch by :Tr. Amirikian, and they aro considered the most reliable curves avallable.

In order to utilize the pressure distribution curves, the following assumptions were made. They can be better visualized with the aid of Figure 1:

1. A dock lonjth of 827 feot, divided into 10 equal sections of 82.7 feet. The nine 3 -foot splices between sections were considered as integral parts of the ten 80-foot sections.
2. A dock draft of 8 feet, giving 20 feet of freebourd. This condition is considered to be normal with no ship in the dock.
3. affective areas for outboard and inboard sides of the wingwalls were computed as follows:

Outboard:
Height: 20 fuet freeboard +56 fect wingwall
$=76$ feet.
Length: 827 feet
hrea: $\quad 76 \times 827=62852$ fuet 2
Inboard:
Height: 56 feet
Length: 827 feot
Arca: $\quad 56 \times 827=46312$ feet 2
4. effective area for the longitudinal forces was computed as follows:

> Wingwall hoight: 56 feet
> Wingwall width: 20 foet
> Area per wingwall: 1120 feet 2

$$
\mathrm{f}^{\mathrm{O}} \mathrm{~m}
$$

$$
=
$$

$$
5
$$

$$
\cdots+1+1+\frac{1}{2}+
$$

Hn

$$
(x+2+2+1+2
$$

$$
=0 \quad-4 \quad 3 \quad 3-0
$$

$$
\begin{aligned}
& t=\sqrt{2}-2-\cos +2
\end{aligned}
$$

Section width: 256 feet
Freeboard: 20 foct
Area: 5120 reet 2

Total area: $5120+(2 \times 1120)=7360$ foet 2
5. The effective side areas were assumed to be the projected areas, since it is manifostly impossible to take into account the slight irregularities of the ends of the individual sections.

In order to evaluate the forces, the following formula was also supplied by Mr. Amirikian:

$$
\mathrm{P}=.00256 \mathrm{~V}^{2} \mathrm{pA}
$$

where
$P=$ the force in pounds
$V=$ the wind velocity in miles per hour
$p=$ the ordinate of the wind pressure distribution curve obtained by approximate integration over tho area
$A=$ the area in square feet
For the purpose of this study, a wind velocity of 120 miles por hour was chosen. It is considered that this is the highest constant wind which could be encountered, even though some gusts might be of momontarily groater velocity.

The values of p were obtainod by approximato integration by rectangles, with the ordinatos read at the center of each of the ten sections. The lever arms wore
measured from the center of moments to the center of the section under consideration. The center of moments was taken at the center of the first windward section. The results are tabulated in Tables 3 and 4.

Definition of the column headings in these tables may aid in following the method of computation. In Table 3, thoy are as follows:

1. Wind angle - The acute angle made by the wind with the longitudinal axis of the dock.
2. Side - Side 1 represents the outboard windward surface, Side 2 represents the inboard surface of the windward wingwall, Sido 3 the inboard surface of the leeward wingwall, and Side 4 the outboard surface of the leeward wingwall.
3. Section - The number of the section, numbering from the "bow". The "bow" will be taken as the end against which the wind is blowing.
4. p - The ordinate of the wind pressure distribution curve as proviously defined.
5. Number of Sections - The numbor of sections from the bow section, containing the center of moments, and the section considered.
6. m
7. $\{p$
8. y_{b}
9. $\overline{\mathrm{y}}$

The column headings of Table 4 are as follows:

1. "ind angle - As defined above.
2. Side
3. \&p
4. A
5. \bar{y}
6. PA or PAY
7. Total
8. p

- The resultant lever arm of εp, expressed in number of sections from the center of the entire dock, i.e., bew tween sections 5 and 6 .

2. Force name - Transvorse, longitudinal, or moment.

- The moment of the p ordinate expressed in terms of number of sections contained in the lever arm.
- The summation of p over 10 sections.
- The resultant lever arm of $s p$, expressed in number of sections from the center of the bow section.
- As defined above.
- As defined above.
- The arca of the entirc side under consideration.
- As defined above.
- For transverse and longitudinal forces, pA equals the product of $\frac{\mathrm{sp}}{10} \mathrm{x}$ the total side area. For moments, pAy equals $\frac{p}{10} \times$ A $\times \bar{y} \times 82.7$.
- The sum of the forces on the sides or pairs of sides, from column 7 .
- Tho force, oqual to column $8 \times .00256$ v^{2}.

The forces resulting from a wind at 45° to the longitudinal axis of the dock were chosen for this study since
they represented the worst combination of transverse force and moment. As can be seen from comparison of the results at $30^{\circ}, 45^{\circ}$, and 60°, neither the transverse force nor the moment at 45° are the largest values obtained; the largest moment occurs at 30° with the smallest of the three transvorse forces, and vice versa at 60°. The condition at 45° was therefore considered the most critical of the known conditions.

In order to determine shear and bending moment at any section, it was convenient to also express the wind loads as a concentration upon each section. These forces were computed in accordance with previous assumptions and are tabulated in Table 5. The column headings are as before, with the exception of the following:

P_{3}	- Total ordinate per section for pairs
	of sides with equal aroas.
A_{s}	- Side areas per section.
P_{s}	- Force on the section.

$$
\begin{equation*}
4 \operatorname{lin}^{2}=8=- \tag{18}
\end{equation*}
$$

-
$48+8+8+2$
\cdots 2 2 2
 \square 1
 + $+\frac{1}{4}+$ 1. . + (
 ? *il \quad and

Methods previously used to determine chain reactions on floating drydocks are as follows:

1. Given lateral force, longitudinal force, and moment, the formula $\frac{P}{A}+\frac{M c}{I}$ is used, as described by Frederick R. Harris, Inc., "Design Assumptions, Floating DryDocks", where P is the lateral force, A is the number of chains in the two quadrants resisting the moment, M is the moment, c is the distance to the chain at the greatest distance from amidships, and I is the sum of the second moments of the chains in the two quadrants resisting the moment. The result is an approximation of the horizontal force in the most highly stressed chain. This formula is acceptable for short docks only.
2. A trial and error method has been used. The effect of lee chains is disregarded. A plot of horizontal force against displacement, similar to Figure 4, is used. A trial and error solution is used to obtain equilibrium, an assumption of dock position being made, which determines the displacement of all chains, and the force exerted by each. If these forces do not produce equilibrium, another assumption of dock position must be made. This method was rejected both because the lee chains were neglected, and because of the difficulty of obtaining accurate results. It will be observed that an error in position of as little as 0.1 feet will produce a very large change in chain reaction.
$12+20.20$

$$
1=10 \times x+1-1+\infty+2=11
$$

 $212+20+2$

$$
\cdots+1-1-1+4
$$

 $1-2$

3. A letter to the Bureau of Yards and Docks from the field outlined a method which consisted of determining tho total wind force against the projected broadside area and dividing by the number of pairs of chains. The result is an approximation of the horizontal force in one chain. The method is decidedly inferior, as the effect of moment caused by the wind is disregarded, and tho effect of the catenary relationship is not included.
4. Frederick R. Harris, Inc., Consulting Einginecrs, New York City, designers of the AFD3, uscd a method involving the use of indeterminate analysis combined with the catenary relationship which is not in print, nor available at the Bureau of Yards and Docks. This method is mentioned in "Design Assumptions and Methods, Floating DryDocks", by Frederick R. Harris.

Considering the inadequacy of the first three methods mentioned, and the unavailability of the fourth, it is necessary to develop a method of analysis which utilizes the catenary characteristics of the pairs of chains used in the mooring, which achieves equilibrium with a high degree of accuracy, and which evolves a definite answer without laborious trial and error.

The method used is an approximation and correction process. The process proceeds in steps; first the lateral and longitudinal forces are applied alone, the resulting displacements aro found, an increment of displacement
necessary to produce the proper moment is introduced, and the resulting chain forces are found, with their respective displacements. To these displacements an increment of displacement is added to restore the proper transverse and lateral forces. Then another correction for moment is applied, the process being carricd on in this way until the error is reduced to acceptable proportions. Experience shows that about six approximations gives about 0.5 error in equilibrium.

A complete description of the method follows. Assumptions:

1. The dock is rigid and does not deflect transversely.
2. The effect of dock rotation on the distance between the chains of any one pair is negligible.
3. All chains are as described in the discussion of the catenary, that is, 700 feet long, in 90 feet of water, weigh 72.5 pounds per foot submerged in sea water, have 9750 pounds initial tension, and are laid either perpendicular to or parallel with the center line of the dock.
4. As the dock moves in a direction perpendicular to tho line of a chain, thus swinging the chain through a slight arc, the effect of the change of the line of action of the chain is negligible.
5. There is no vertical movement of the dock.
6. The anchors do not drag.
7. There is no elastic elongation of the chains.

Definitions:

- The sum of the increments of moment in all the chains to restore equilibrium. $\quad \Sigma \triangle M=$ Sum of Delta M_{n}.

Referring to Figure 7, if the force P alonc is applied to the dock, each chain has the force $F_{1}=P / N$, where N is the number of pairs of chains capablo of resisting the force. there P is lateral force, N is 14. Where P is longitudinal force, N is 2. Discussing only lateral effects, as in Figure 7 , reading F_{1} on the characteristic for a pair of chains, x is found, and the position of the dock is defined as position 1. It is desired to determine a correction to apply to x_{1} such that the dock may be rotated to position 2 , In which position the moment produced by the chain reactions will equal the moment applied externally. For this step, the assumption is made that the moment exerted by the chains at oither end of the dock is negligible.

Considering the transverse chains only:

$$
\begin{equation*}
\left\{i M_{0}=M_{0}=\left\{M_{n}=\xi y\left(F_{2}\right),\right.\right. \tag{1}
\end{equation*}
$$

$=\left\{y\left(F_{1}+\Delta F\right)\right.$ to satisfy equilibrium
Thereforo

$$
\begin{align*}
& M_{0}=\sum y \triangle F, \tag{2}\\
& \text { since y has equal plus } \\
& \text { and minus values }
\end{align*}
$$

$$
\begin{equation*}
f^{\prime}(x)=d F / d x=\Delta F / \Delta x \tag{3}
\end{equation*}
$$

Therefore $\quad \Delta F=\Delta x \cdot f^{\prime}(x)$, approximately.
Substituting (3) in (2),

$$
\begin{equation*}
M=\leq\left(y \cdot \Delta x \cdot f^{\prime}(x)\right) . \tag{4}
\end{equation*}
$$

But, by similar triangles,

$$
\begin{align*}
& \frac{\Delta x}{y}=\frac{\Delta x_{a}}{y_{a}} \quad \text { or, } \\
& \Delta x=\frac{y \cdot \Delta x_{a}}{y_{a}} \tag{5}
\end{align*}
$$

Substituting (5) in (4),

$$
M=\left\langle\left[\frac{\left(y^{2} \cdot \Delta x_{a} \cdot f \cdot(x)\right.}{y_{a}}\right]\right.
$$

Factoring constants,

$$
\begin{equation*}
M=\frac{f^{\prime}(x) \cdot \Delta x_{a} \cdot\left\{y^{2}\right.}{y_{a}} \tag{6}
\end{equation*}
$$

or,

$$
\begin{equation*}
\Delta x_{a}=\frac{M \cdot y_{a}}{f^{\prime}(x) \cdot \sum y^{2}} \tag{7}
\end{equation*}
$$

In equation (6), Δx_{a} is the only unknown. When Δx_{a} has been found, the remaining increments of displacement may be found from Δx_{a} by applying ratios of distance from the center of the dock. The corresponding forces are read from the characteristic curve.

The dock now occupies position 2. Correction for the effect of moment has been made to the first position resulting from pure transverse force, and the correction has caused a resulting orror in trnasverse force. The next step consists of correcting this error in transverse force, and to also correct the longitudinal force which was disturbed by the last operation.

Factoring,

$$
z \Delta M=\frac{\Delta x_{a}}{y_{a}} \leqslant y^{2} \cdot f^{\prime}(x)
$$

From which,

$$
\begin{equation*}
\Delta x_{a}=\frac{\varepsilon \Delta M \cdot y_{a}}{\left\langle\left(y^{2} \cdot f^{\prime}(\bar{x})\right)\right.} \tag{14}
\end{equation*}
$$

The process is repeated using relationships (10) and (14) until results are obtained within the desired accuracy. Table 6 demonstrates the process for the example used. Column 2 gives the total force divided by the number of chains, which is the load carried by each of the chains when pure force is applied. Column 3 gives the value of x for this value of F. Column 4 tabulates $f^{\prime}(x)$. Column 5 contains Δx as found by equation (7). Column 6 is column 3 plus column 5. In column 7 are recorded the forces corresponding to the value of x in column 6. Column 9 is the corrective increment of x found from equation (10) above. Column 13 is column 11 multiplied by column 12. The total of column 13, when subtracted from the external moment, gives the valuo of sigma delta M, used in equation (14) to find the values in column 17. The sum of column 16 , the values entored there being column 15 multiplied by column 14 , is also substitutcd in oquation (14). Columns including column 18 and beyond repeat columns 6 through 17.

In the example at hand, the increments of x reduce themselves to 0.02 fect or loss when finding the sixth approximation. Had the points plotted on the graph beon
年
$n+\infty=\pi$ a \cos

 - timat aje

 1

$$
\operatorname{lot}+10 \mathrm{ec}+\frac{1}{2}
$$

 2
 Mi 2

absolutely correct, and not estimated in the range from 40 to 43 feet, reading of the graph with the scale used would still have doubtful accuracy with values of x expressed to 0.02 feet or less, and the values of force have an accuracy of plus or minus 10 pounds. It is, therefore, not necessary to carry the process further.

It will be noted that the final values of F and M are correct to 0.5%. It does not follow necossarily that the value of force found for each pair of chains is within 0.5% of the force that would exist had the actual conditions used been exactly duplicated and the forces measurcd. Errors in the graph used, human error in reading the graph, and the limitations of the slide rule eliminate the possibility of accuracy of as high a degree as 99.5%. Tho answers to the mooring problem are recorded to this high apparent accuracy in order that a condition as near as possible to complete equilibrium is establishod, and the shear and moment values to be developed later will not show an error in equilibrium. Should the value of x measured from an actual prototype situation differ as much as a foot, or more, it is evident that the distribution of forces along the length of the dock follows closoly the distribution of forcos to be found in an actual catonary, since the forces aro plotted on a smooth curve which may be displaced right or left slightly from its true position, but which gives a good representation of the values of the forces in the chains one relative to another. If those values of chain forces,

18

 2
 Butian ing $\rightarrow 2+2$

accurate relative one to another, give equilibrium, then the values of tho forces individually must also be accurate. After the problem undertaken in this work becamo known to an enginour in the Bureau of Yards and Docks who had formerly had experience in the suspension bridge field, he trans. mitted to the authors a set of formulas defining the catonary. Like many formulas used in engineering practice, they are not considored to be gencrally known. They aro not used in the analysis as presented herein, but they are presented as a possiblo means of obtaining values of the characteristic curvos in tho doubtful region where the chain does not lie tangent to the bottom. They will be used as a chock on the highest chain reaction to ascertain the error in the characteristic curve as used.

$$
\begin{aligned}
& s=\frac{H}{W}(\tan A-\tan B) \\
& y=\frac{H}{W}(\sec A-\sec B) \\
& x=\frac{H}{W} \log _{n} \frac{\left(\tan \left(45^{\circ}+A / 2\right)\right)}{\left(\tan \left(45^{\circ}+B / 2\right)\right)}
\end{aligned}
$$

Whero:
s - the length of chain involved in the catenary.
y - the length of the vertical projection of tho catenary.
x - the length of the horizontal projection.
H - the horizontal force at any point in tho chain.
w - tho woight por foot of the chain.
A - the acute angle the tangent to the curve at the point (x, y) makes with the horizontal.

B - tho acute angle the tangent to tho curve at the point $(0,0)$ makes with the horizontal.

The accuratc use of these formulas requires the use of six or seven place tables or a calculating machine. The choice of variablos affocts the usefulness of the formulas. If s, x, and y are fixed, and it is desired to find $H / w, ~ a$ triple trial and error method of solution must be used, a process which, it is believed, could require the use of an eloctronic calculating machino. If s, y, and H / w aro fixcd, it being desired to determine x, a double trial and error mothod must bo used which is comparatively simple of solution.

The value found for chain $a-1$ by Table 6 will bo chockod by the uso of thesc formulas. The chain has a displacement of 41.45 fect. Therefore x for the chain is $41.45+42.00$ $+610.00=683.45$ feet. The comparison will be made between this x value of 683.45 and the value of x obtained from the formulas when y, s, and H / w are fixed.

```
y=(H/w) (sec A - sec B) 90=5040(sec A - sec B)
s=(H/w) (tan A - tan B) 700=5040(tan A - tan B)
```

Solution by trial and error gives $A=11^{\circ} 16.331$, $B=3^{\circ} 27.451$, within accuracy of five place trigonomotric and logarithm tables.

$$
\begin{aligned}
x & =(H / w) \log _{n} \frac{\left(\tan \left(45^{\circ}+A / 2\right)\right.}{\left(\tan \left(45^{\circ}+\frac{A}{+} / 2\right)\right)} \\
& =5040 \cdot 2.30258 . \log _{10} \frac{\left(\tan 50^{\circ} 38.171\right)}{\left(\tan 46^{\circ} 43.72^{1}\right)}
\end{aligned}
$$

$$
\tan 50-38.17 \quad \log \cdot 08600
$$

$$
\tan 46-43.72 \log \quad .02622
$$

$$
\begin{array}{ccc}
\frac{.02622}{.05978} & \log & 8.77656-10 \\
2.30258 & \log & .36222 \\
5040 & \log & \frac{3.70243}{2.84121} \\
693.77 & \text { sum } &
\end{array}
$$

The actual computations for this step aro givon in order to demonstrate that five place tablos are insufficient for accurate results to five significant figures. The log term, 0.05978 , sensitive as it is to slight errors in angle, and existing as it does in four significant figures, reduces the answer to accuracy of four significant figures or less. The valuc 693.77 differs from the value 693.45 obtained by the analysis by 0.3 feet. This indicates that the characteristic curve used has a shapo closely approximating the correct shape, and that the values of chain reactions are accurate, one with respect to the other.

The solution above yields the angle the chain makos with the horizontal at its upper end. Since $T=H$ sec A, and the actual horizontal force is $5040 \cdot 72.5=365500$ pounds, the tension in the chain is $365500 \mathrm{sec} 11^{\circ} 16^{\prime}=365500^{\prime}$ $1.0197=372000$ pounds.

Reference to Figure 4, the characteristic for one chain, shows that a chain with $x=42.41 .45=0.55$ feet exerts a negligible force, and therefore, substantially all tho horizontal force is taken by chain a-l. Accordingly, that horizontal force may be all attributed to chain a-1 in computing the tension.

THE LOADED STRUCTURE

The type of floating drydock under study does not lend 1tself to ease of stress analysis. Structurally, the dock consists of two continuous wing walls, 20' $\mathrm{x} 55^{\prime}$, placed 160' apart center to center, on edge, to the bottoms of which are bolted ten pontoon sections, each covering 80' of wingwall length, there being 3 , between each pontoon and the next. The bolted connection consists of $4081-1 / 4^{\prime \prime}$ bolts, 204 at each wingwall, in slotted holes. The holes in the wingwall are slotted fore and aft and the holes in the pontoon are slotted transversely, the theory being that deflections and strains will not be transmitted by the connection. The whole structure as described is 827^{\prime} in length.

Although structurally the wingwalls are continuous, they actually consist of ten pairs of sections carried by their respective pontoon sections in a folded position to the erection site, where the wingwalls are raised, and the wingwalls of adjacent sections are welded together by means of a splice three foet long. The cross sections of a splice, and of a wingwall, are shown in Figure 8.

The designers of this dock, Frederick R. Harris, Inc., computed the moment of inertia of these sections about the horizontal axis as a part of their design. The moment of inertia about the vertical axis was not computed by the designers. The computation for this moment of inertia is shown in Table 7.
'When the wind and chain loads already found are applied to the dock, the resisting action is very complex. The wind loads are applied largely as a distributed load on the wingwalls. The chain loads are introduced at the pontoon deck level, and are transmitted through the bolted connection to the wingwall. If this loading situation is viewed in cross section, the winfwalls will act as cantilevers, and the pontoon section will act as a beam with moment introduced by the two wingwalls.

The wind loads applied on the wingwall vary along the length of the dock, as do the loads introduced to the wingwalls from the chains through the bolted connoction. The various cantilevers in various cross sections will have different loadings, and therefore torsion must exist along the longitudinal axes of the wingwalls.

The variation in loading along the dock will produco shoars and moments in the wingwalls, considered to act as simplo beams.

Should any degrec of restraint exist in the bolted connection through bolt head friction, the pontoon, acting as a very deep beam, will aid the wingwalls in rosisting bending moment.

The principal actions porformed by the dock in following nature's law of least work in absorbing the loading into the dock structure are, thererore:

1. Wingwall cantilever action, and pontoon beam action.
2. Wingwall torsion
3. Wingwall bending
4. Pontoon bending as a deep beam.

Vingwall cantilever action and wingwall torsion are disregarded for purposes of determining stross since the magnitude of the loading caused by the wind is a small fraction of the loadings used in the analysis of tho dock under critical design conditions. Had the loadings buen appreciable, and the analysis proven necessary, that analysis would be worthy of separate study. The problem is complicated by the unknown rigidity of the joint between the wingwall and pontoon. The connection contains a rubber gasket which prevonts rigidity. Loading distribution vertically as well as longitudinally would have to be known.
$\because n_{i j} w a l l$ bending is considered to be the principal action. Pontoon bending may be considered to be negligible because of the probability of bolt head slippage which would prevent the pontoon sections from aiding the wingwalls in resisting bending. (Local stresses do exist in the pontoon as a result of transmitting chain loads to the wing wall, but tho distribution of loading is unknown. The stresses would be small, if determined, since the loads are small and tho beam is vory doep.

The stresses in floxure of the winswall are analyzod undor the following assumptions:

1. Tho bolted connection and pontoon form a rigid foundation such that the connoction resists all torsion which may dovelop as a rosult of loading tho wingwall beam eccontrically. Thoreforo, the wingwall will act as a
simple beam, all loads upon which may be assumed to act through the point of zero torsion, or the torsion conter.
2. The bolted connection has absolute frocdom of movement within the slots so that no bending is resisted by the pontoon.
3. The chain loads are transmitted to the wingwall by means of the bolted connection. The transfer is undoubtedly performed by distributed bearing, but for case in computation, and considering the number of chain loads (14), approaching a distributed loading condition, the chain loads are assumed to be applied at points on the wingwall adjacent to the points where the chains are connected to the pontoon deck.
4. Although the wind loadings on the two wingwalls are different, the fact that the two wingwalls are pinned togethor, so to speak, by the ten pontoon sections, causing one wingwall to have the same defloction in bending as the other, gives the assumption that the bending is resisted half by one wingwall and half by the othor.

The sum and substance of these assumptions, stated simply, is that the wingwalls act as simple beams, loaded with the wind and chain loads already determinod.

Table 8, "ingwall Noments and Shears, gives tho valuos of moment and shear at every load point. Tho maximum moment is 110,520 foot kips, which gives a stress of $55260 \times 10 / 95889=5.76 \mathrm{ksi}$., half the moment being taken by oach wingwall.
㲘

The moment at both ends should be 950 foot-kips. The discrepancy of 4495 foot kips at one end may seen excessively large, but it must be noticed that shear, one source of error, has a discrepancy of 7.9 kips , within $0.5,0$ of Equilibrium. Should there be no error in moment due to lack of equilibrium in moment, the error which 7.9 kips could produce, should it be active for the whole length of the beam, would be $7.9 \times 779.0=6150$ foot kips, which is greater than the error involved. The reason for attempting to obtain equilibrium to 0.5% or better, although individual chain forces might have a greater error, is now evident.

It is also possible to approximate shear stress in the wing wall splice. Considering the splice cross section, it is evident that since the shear loading is introduced in the plane of the bottom splice plates, substantially all the shear resistance will be taken in these plates. The side plates will yield in bending. The top plates will yield in bending as a result of torsion. The splice taken as a wholo will resist a scissors action, the pivot being at the top deck.

The maximum shear between sections is betweon sections 3 and 4, 720 kips . The area of the bottom plates is 480 sq . in. The stress is therefore $720 / 480=1.5 \mathrm{ksi}$.

CONCLUSIONS AND RECOMMENDATIONS

The chain reactions, bending moments, shears, and stresses obtained in the preceding sections were found by a new method which is believed to follow the actual physical conditions of the problems with sufficient accuracy to yield results with accoptable accuracy. The basis of the method is original, but an effort was made, as far as possible, to utilize knowledge gained in the few previous attempts to analyze this problem, and any other problems having bearing on the one at hand.

No attempt is made to state as a definite conclusion whether or not the mooring would fail under a load caused by a wind of 120 miles per hour, or whether or not the stresses resulting would be excessive. In the example at hand, cortain conclusions are reached, which are valid under the assumptions used. It must be realized that different conditions of the problem, caused by changing onc or more of the variables, such as chain longth, chain weight, depth of water, dock freeboard, mooring plan, wind velocity, initial chain tension, or dock length, or by the inclusion of other forces, such as current, wave, or inertia forces, would require a separate analysis following the method outlinod. The numerical conclusions, therefore, cover only the given case, and are included in order to demonstrate the results which may be reached by use of the method.

The horizontal force exerted by the maximum chain is 365500 pounds, with a corresponding tension of 372000 pounds. The standard mooring consists of $3^{\prime \prime}$ cast stoel chain, connected to a 30,000 pound stockless stcel ${ }^{1}$ anchor. The proof load of $3^{\prime \prime}$ chain is 495,000 pounds. ${ }^{2}$ The working load, by 3 ureau of Yards and Docks practice, is taken as 35% of the breaking strength. The working load for $3^{\prime \prime}$ chain is therefore 242,000 pounds, which indicates that a $3^{\prime \prime}$ chain is insufficiont for this loading. The breaking strength of a chain required to carry 372000 pounds is 1062000 pounds, basod on 35% loading. A 3-7/8" chain has a breaking load of 1110210 pounds.

To carry the process to completion, the analysis should be repeated using a chain having tho weight per foot of a $3-7 / 8^{\prime \prime}$ chain.

The 30000 pound anchor used is capable of carrying a horizontal force of 213000 pounds, based on the convention that a stockless anchor will hold 7.1 times its woight in a sandy bottom. ${ }^{2}$ This anchor is not sufficient to carry the load. Although the anchor choice should bo made after substituting the $3-78^{\prime \prime}$ chain, in the analysis, or any further substitutions, should the $3-7 / 8^{\prime \prime}$ chain not prove satisfactory, the anchor choice, for sake of example, will bo mado on the basis of the forces found in the example usod. The weight of the anchor required (7.1 divided into
the horizontal force) would be 52000 pounds.
The maximum flexural stress exists in the splice between sections 5 and 6 , in the side plates of the splice. The value of this stress is 5760 psi. In itsolf, this stress is small, but it may be added to stross caused by other loadings on the structure, such as hofging or sagging.

The maximum shear stress exists in the splice between sections 3 and 4, in the bottom plates of the splice. The value of this stress is 1500 psi. Again, this stress is small, but may be additive to othor stresses.

The procedure followod was outlined before work was started. As the analysis of the example takon progrossed, certain improvements appeared advisable. Those that were anticipated were, of course, incorporated in the analysis, and are not included in this section. Those that became ovident after completion of the various phases of the analysis are prosented here for future use.

The usc of the catenary cquations as applied to suspension bridges for the portion of the catenary characteristic whore the chain is not tangont to tho bottom is recommonded. It is sujgested that x, y, and H / w bo established and the corrosponding x found.

Tho catenary curves were drawn with tho use of four place tables and ton inch slide rule. Al though tho points found formed a smooth curvo, it is recommended that tables of hisher accuracy bo uscd in conjunction with a calculating
machine in finding points on the curve.
It may be pointed out that families of curvos for difforent depths and difforent values of initial tension could bo drawn, available for solution of any particular problom. Thuse curves might well be made on the busis of a chain weight of unity as uscd in this analysis. It is to be noticed that for initial tension of moderate value, the effect of the lee chains is small. This should not be taken as a general law, as high values of initial tension would cause the lee chains to affoct the problem appreciably.

The rosults of the analysis can be no better than the loading used. Tho application of this method would be more practical after pressure and load distributions of wind, current and wave forces have been detormined which have been cstablished as accurato. The stresses and chain loads found will undoubtodly be larger when combinod wind, current, and wavo loads are applied.

If a more refined mothod of stress computation wore dosired in any future use of the method, it is suggested that a more refined system of loading bo used, distributing wind loads as they actually occur, and taking into account the distribution of chain reactions from pontoon to wingwall through tho bolted connection.

A more refined analysis would require the consideration of the deflection of tho dock undor the appliod louding. This doflection in itself would chango the loading by modifying the chain displacument by a small, yet appreciable,
amount. A possible general method of accomplishing this process would be to find the loads assuming a rigid dock, find the deflection of the dock caused by this loading, change chain reactions accordingly, and ropeat the process until error is reduced to zero.

For an exact analysis, the effect of chain elasticity should be takon into account. The load carried by a chain causes elongation of the chain, and correction would have to be made to the characteristic curve of the catonary to account for the greater length of chain.

Involved in a complete analysis of the structural problem would bo an analysis of local stresses around the point of connection of the mooring chain to the dock. Failure at this point would be equally as serious as failure of a chain, and much more serious than the dragging of an anchor.

Fefined analysis would includo a complete analysis of the work of the structure in resisting the applied loads. The major types of action have boun onumerated, and the analysis could include many more types, limited only by the designor's imagination and the valuc of indeterminate structural analysis.

THBLE 1

1	2	3	4	5	3	7	8	9
$\frac{x}{H}$	cosh-1	$\frac{90}{\cosh -1}$	$x=\frac{x}{H} \times H$	Sinh	$\begin{aligned} & \operatorname{Sinh}- \\ & (\cosh -1) \end{aligned}$	$\begin{aligned} & \Delta S \\ & =H \times 6 \end{aligned}$	$x^{\prime}=1$	$\mathrm{T}=\mathrm{H}+\mathrm{y}$
6.0	200.72	. 448	2.69	201.71	0.99	. 444	2.25	90.448
5.0	73.210	$1.23 d$	d 6.15	74.203	0.993	1.22	4.93	91.22
4.0	26.308	3.423	13.70	27.290	0.982	3.36	10.34	93.422
3.5	15.573	5.78	20.22	16.543	0.970	5.60	14.62	95.78
3.3	12.575	7.16	23.61	13.538	0.963	6.89	16.72	97.16
3.0	9.068	9.93	29.80	10.018	0.950	9.43	20.37	99.93
2.7	6.4735	13.90	37.55	7.4063	0.933	12.98	24.57	103.90
2.4	4.5569	19.72	47.35	5.4662	0.909	17.93	29.42	109.72
2.2	3.5679	25.22	55.50	4.4571	0.889	22.40	33.10	115.22
2.0	2.7622	32.58	65.16	3.6269	0.865	28.15	37.01	122.58
1.8	2.1075	42.70	76.90	2.9422	0.8347	35.60	41.30	132.70
1.6	1.5775	57.10	91.30	2.3756	0.7981	45.55	45.75	147.10
1.4	1.1509	78.15	109.30	1.9043	0.7534^{1}	58.80	50.50	168.15
1.2	0.8107	111.00	133.20	1.5095	0.6988	77.55	55.65	201.00
1.0	0.5431	165.80	165.80	1.1752	0.6321	104.80	61.00	255.80
0.8	0.3374	266.50	213.20	0.8881	0.5507	46.90	66.30	356.50
0.7	$0.255 ?$	353.00	247.0	0.7586	0.5034	177.60	69.4	443.0
0.61	0.1919	469.50	286.2	0.6485	0.4566^{\prime}	'214.2	72.0	559.5
0.55	0.1551	580.0	319.0	0.5782	0.4231	245.5	73.5	670.0
0.50	0.1276	705.5	352.8	0.5211	0.3935	277.6	75.2	795.5
0.40	0.0811	1110.0	444.0	0.4108	0.3297	365.9	78.1	1200.0
0.30	0.0453	1985	595	0.3045	0.2592	514	81.0	2075
0.28	0.0395	2279	638	0.2837	0.2442	556	82	2369
0.26	0.0340	2646	688	$0.2629!$	0.2289 .	606	82	2736
0.259	0.03371	2670	692	0.26191	0.2282	: 610	82	'2760
0.20	0.0201	4475	895	0.2013	0.1812	; 811	84	4565
10.15	0.0113	7960 11	1194	0.1506	0.1393	1110	84	8050
0.14	0.0098	9190	1287	0.1405	0.1307	1200	87	9280
						i	;	

$$
\begin{aligned}
& \frac{T}{w}=134.5 \\
& \quad X^{\prime}=42.00^{\prime}
\end{aligned}
$$

$X \quad \mathrm{~A}$	B	DIFF :	90-ф	COThN	SCALE	$\frac{d F}{d x}$
$0 \quad 45.00$	45.00	0	25	2.24	2.5	5. 60
147.8	42.10	5.7	25	2.24	2.5	5.60
$2 \quad 50.7$	39.6	11.1	24	2.36	2.5	5.80
$4 \quad 57.7$	34.8	22.9	22.1	2.46	2.5	6.15
$6 \quad 65.9$	30.5	35.4	$\begin{aligned} & 21.3) \\ & 21.2)^{21.2} \end{aligned}$	2.58	2.5	6.45
$8 \quad 75.7$	25.8	48.9	20.9	2.62	2.5	6.55
1086.0	23.4	62.6	18.6	2.97	2.5	7.42
12100.0	20.5	79.5	16.0	3.48	2.5	8.70
14116	17.8	98	14.1	3.98	2.5	9.85
16135	15.4	120	12.3	4.59	2.5	11.48
18.156	13.2	143	63.0	. 510	25	12.78
20 183	11.3	172	57.2	.645	25	16.15
22218	9.7	209	52	.781	25	19.80
24262	8.1	254	46.2	. 96	25	24.05
26315	$7 \cdot 7$	308	40.7	1.16	25	29.0
28370	5.4	365	34.0	1.48	25	37.0
30469.0	4.2	465	27.6	1.91	25	47.7
32575	3.2	572	19.1	2.88	25	72.0
34750	2.4	745	13.2	4.26	25	106.9
35905	2.0	903	58.0	. 625	250	156.1
361065	1.6	1064	6.9	8.25	25	206
371285	1.2	1286	44.6	1.012	250	253.4
381580	0.9	1579	35.0	1.43	250	358.0
392000	0.6	2000	28.0	1.88	250	470.0
402670	0.3	2670	17.8	3.11	250	777
413800	0.1	3800	8.1	7.03	250	1758.0
4210000	0.0	10000	1.5	138	250	9550
43 Infinite	0	Infinite				

TABLC 3 - I

TABLE 3 - III

$\begin{aligned} & \text { Wind } \\ & \text { Angle } \end{aligned}$	Side	Section	p	Number of Sections	m m	$\therefore \mathrm{p}$	y_{b}	\vec{y}
45°	3	1	$1+.76$	0	0			
		2	+ .55	1	+0.55			
		3	. 35	2	. 66			
		4	- 73	3	0.54			
		5	. $1<$	4	. こ¢			
		6	$\therefore \quad, \therefore \mathrm{C}$	5	, 50			
		7 .	- .06	6	. 26			
		\bigcirc	: .2\%	7	. 21			
		\because	. 00	8	- 00			
		10	2.15	c	$5,08$	2.15	1.57	$E .93$
45°	4	I	$\therefore \quad \therefore 3$	0	0			
		2	- 60	i	$\div .60$			
		©	- . 5.7	2	1.14			
		4	, $5 j$	3	11.65			
		5	. 5%	4	12.20			
		i	, 56	5	2.75			
		"	. 5%	6	3.30			
		\&	. 53	7	1035			
		¢	. 35	8	4.1 .0			
		10	$\frac{.55}{5.65}$	9	$\begin{array}{r} 1 \\ 20 \cdot 35 \end{array}$	5.62	4.42	$0: 08$
160°	1	1	- . 86	C	10			
		2	. .83	1	+ 83			
		3	.83	$?$! 1.60			
		4	. 76	3	2.28			
		5	. 70	4	12.30			
		6	. 62	5	3. 10			
		7	. 55	6	3.30			
		8	. 45	7	3.15			
		9	. 32	8	2.56			
		10	. 27	9	1.98			
			$\overline{6.11}$		21.60	6.11	3.54	0.96

TABLE 3 - IV

TABLE 4 - I

'VIND LOAD TABULuTION @ $45^{\circ}, 120 \mathrm{MPH}$

$$
\begin{array}{rlll}
\psi & =45^{\circ} & 3^{\prime \prime} \text { cast steel chain } & \mathrm{T}_{1}=5.04 \times 10^{4} \\
\mathrm{~T} & =3.657 \times 10^{6} & \text { standard assembly } & \mathrm{L}_{1}=3.365 \times 10^{3} \\
\mathrm{~L} & =2.44 \times 10^{5} & \text { Proof Load }-495,000 \% & \text { Break Load }-693,000 \\
\mathrm{M} & =230.9 \times 10^{6} & \mathrm{M}_{1}=3.185 \times 10^{6}
\end{array}
$$

10	11	12	13	14	15	16	17	18
x_{3}	F_{3}	y_{1}	$\begin{gathered} \mathrm{M}_{3} \\ (\mathrm{~F} 3- \\ 3500)(\mathrm{y}) \end{gathered}$	$3)$	y^{2}	$\begin{aligned} & f^{\prime}\left(x_{3}\right) \cdot y^{2} \\ & x 10^{-5} \end{aligned}$		x^{4}
41.37	4700	389.5	467500	3200	151710	4850	$+.0805$	41.45
.41.31	4550	357.51	368000	3000	127806	3834	$+.07$	41.38
41.22	4320	306.5	251500	2500	93942.	23.19	+. 06	41.28
. 41.17	4150	274.5	178500	2300	75350	1733	$+.06$	41.23
41.08	3980	223.5	107500	12200	49952	1100	$+.05$	41.13
141.02	3900	191.5	76500	2000	36672	733	$+.04$	41.06
:40.93	3720	140.5	31000	1800	19740	356	$+.03$	± 0.96
40.45	3070	140.5	60500	i1100	19740	217	-. 03	40.42
40.36	2980	191.5	99500	1250	36672	385	-. 04	40.32
140.30	2930	223.5	127500	1000	49952	500	-. 05	40.25
40.21	2850	274.5	173000	920	75350	693	-. 06	40.15
40.16	2780	306.5	220500	860	93942	807	-. 06	40.10
140.07	2710	357.5	282500	840	127806	1081	-. 07	40.00
140.01	2680	389.5	319000	800	- 151710	1212	-. 08	39.93
Totals			2763000		1110344	19840		
138.40	1740	95.0		390	9025	35	+. 02	38.12
38.08	1620	95.0		345	9025	31	-. 02	38.06
Totals	120	$95=$	$\begin{array}{r} 11400 \\ \frac{2763000}{-2774400} \\ +3185000 \\ \hline 411600 \end{array}$		$\frac{18050}{1128394}$	$\begin{array}{r} 66 \\ \hline 19906 \end{array}$		

TABLE 6 (Cont'd)

TABLE 7-I

Moment of Inertia of Wing 'Vall

Member \& Location	$\begin{array}{r} \text { Unit } \\ \text { Area } \\ - \text { in }^{2} \\ \hline \end{array}$	Total Ar8ain	$\begin{gathered} \text { Dist. } \\ \text { to } \% \\ \text { ft. } \end{gathered}$	$\begin{aligned} & \text { rea } \\ & \text { ist. } \\ & \text { in }{ }^{2} t^{2} \\ & \hline \end{aligned}$	$I_{0}-i n^{4}$
$\begin{gathered} \text { Deck P1-11/16"x18' } \\ 93 / 16^{\prime \prime} \\ \hline \end{gathered}$	154.8	154.8	0	0	624219
SaîotyDeck-1/2 x $20^{\prime}-0^{\prime \prime}$$\quad 1$	120.0	120.0	0	0	576000
$\begin{array}{\|} \hline \text { Bottom Pl-15/16"1 } \\ 18{ }^{\prime}-95 / 32^{\prime \prime} 1 \\ \hline \end{array}$	211.0	211.0	0	0	892116
$\begin{gathered} \text { WingWall P1 }-11 / 164 \\ \times 6^{\prime}-0^{\prime \prime} \end{gathered}$	49.5	99.0	10	9900	4
$\begin{aligned} -9 / 16^{\prime \prime} \\ \times 5^{\prime}-113 / 8^{11} \\ \hline \end{aligned}$	40.1	80.2	10	8020	3
$\times 6^{1}-0^{11}-2$	$\begin{array}{r} 36.0 \\ \hline \end{array}$	72.0	10	7200	2
$\times 61-0^{\prime \prime}-7 / 16^{\prime \prime}$	31.5	63.0	10	6300	2
$\times 6^{1}-0^{11}-7 / 16^{11}$	31.5	63.0	10	6300	2
$x 6^{\prime}-0^{\prime \prime}$ 2	36.0	72.0	10	7200	2
$\times 6^{1}-0^{\prime \prime}-1 / 2^{\prime \prime}$	36.0	72.0	10	7200	2
$5^{\prime}-113 / 8^{\prime \prime}$	40.1	80.2	10	8020	3
$\times 6^{1}-0^{\prime \prime}$	58.5	117.0	10	11700	5
$14^{\prime \prime}{ }^{11 / F} 314 \#-$ Cut $8 \frac{1}{2}{ }^{1 /}$ Deep-atDeck	45.9	91.8	10	9180	1630
$\begin{aligned} & 14^{\prime \prime} \text { VF 2ll\#-Cut 7" } \\ & \text { Deep-at 3ottom } \end{aligned}$	30.0	60.0	10	6000	1028
Ving Deck Stiff- 12^{11} (s25 (Cut) 2	3.08	6.16	8	394.2	5
2	3.08	6.16	6	221.8	5
2	3.08	6.16	4	98.6	5
2	3.08	6.16	2	24.6	5
$\begin{aligned} & \text { Safety Deck Stiff.- } \\ & 12^{\prime \prime} \text { (s25 (Cut) } \end{aligned}$	3.08	6.16	8	394.2	5
2	3.08	5.16	6	221.8	5
2	3.08	6.16	4	98.6	5
2	3.08	6.16	2	24.6	5

TABLE 7 - II

Moment of Inertia of Wing Wall

nember Location	No	$\begin{aligned} & \text { Unit } \\ & \text { Are } \\ & \text {-in } \end{aligned}$	Total Aredin	$\begin{aligned} & \text { Dist.to } \\ & \text { of -ft. } \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { Dist. } \end{aligned}$ $- \text { in } f^{2}$	$I_{0}-\mathrm{in}^{4}$
6"x6"xl/2" Ls at Safety Deck	2	5.75	11.5	9.84	1113.5	40
$\begin{aligned} & \text { Bottom Stiff. } \\ & 15^{\prime \prime} \text { [s } 33.9 \text { (cut) } \end{aligned}$	2	4.35	8.7	8	556.8	8
	2	4.35	8.7	6	313.2	8
	2	4.35	8.7	4	139.2	8
	2	4.35	8.7	2	34.8	8
$\begin{aligned} & \hline \text { Side Pl Stiff. } \\ & 8^{\prime \prime} \text { Ts } 18.75 \\ & \hline \end{aligned}$	6	5.49	33.01	9.64	3066.7	262
$-12^{\prime \prime}$ [s 25 (Cut)	12	3.08	37.0	9.47	3318.2	1728
$-12^{\prime \prime}$ [s 25 (Cut)	16	3.08	49.3	9.47	4421.3	2304
$-12^{\prime \prime}$ [s 25 (Cut)	12	3.08	37.0	9.47	3318.2	1728
- 8" is 18.75	6	5.49	33.0	9.64	3066.7	262
Totals					107847.0	2131414
					$\frac{14801.5}{122648.5}$	$\begin{aligned} & +144 \\ = & 14801.5 \end{aligned}$

$$
\begin{aligned}
& 1=1201
\end{aligned}
$$

TABLE 7 - III
Moment of Inertia of Wing Wall Splice

$\begin{aligned} & \text { Member \& } \\ & \text { Location } \end{aligned}$	No	Unit Area	Total Area	Dist. to d	$\begin{aligned} & \text { Area } x^{2} \\ & (\text { Dist } \end{aligned}$	$I_{0}-i n^{4}$
$\begin{aligned} & 1 \text { l/4" Pl at "ping } \\ & \text { Deck } \end{aligned}$	2	15.0	30.0	0	0	360
	4	15.0	60.0	1.25	90.8	720
	4	15.0	60.0	2.50	375	720
	4	15.0	60.0	3.75	1843.8	720
	4	15.0	60.0	5.00	1400	720
	4	52.50	210.0	7.50	11812.5	26666.7
$1 / 4^{\prime \prime}$ Side Pl	8	81.25	650.0	10.0	65000	
$11 / 1^{\prime \prime}$ Pl Under Side	4	15.0	60.0	0.625	23.5	720
	4	15.0	60.0	1.875	180.9	720
	4	15.0	60.0	3.125	585.9	720
	4	15.0	60.0	4.375	1148.4	720
	4	15.0	60.0	5.625	1898.4	720
	4	45.0	180.0	7.875	11162.8	19440
Totals					$\begin{array}{r} 95522.0 \\ \begin{array}{r} 367.7 \\ 95889.7 \end{array} \end{array}$	$\begin{aligned} & 52947 \\ & +144 \\ & =367.7 \end{aligned}$

(4-2-4

TABIE 8

COIPUTATIONS

＂ing ${ }^{\text {Vall }}$ ： oments and Shears

Location	Name	Load	V	Dist．	VxDist．	M
389.5	a－1，2	365.5	0	0	0	950
372.15	サ－1	－548．0	365.5	17.35	6340	7290
357.5	a－3，4	345.5	－182．5	14.65	－2675	4615
306.5	b－1，2	321.5	163.0	51.00	8310	12925
289.45	$\because-2$	－500．0	$48 \% .5$	17.05	8260	21185
274.5	b－3， 4	314.0	－ 15.5	14.95	－ 220	20965
223.5	c－1，2	299.5	298.5	51.00	152.25	361.90
206.75	サ－3	－440．0	598.0	16.75	10015	46205
191.5	c－3， 4	288.5	158.0	15.2 .5	2410	48615
140.5	d－1，2	273.5	446.5	51.00	22770	71385
124.05	$\cdots-4$	－390．0	720.0	16.45	11845	83230
¢1． 35	－-5	－362．2	330.0	82.70	27290	110520
11.35	$\because-6$	－334．5	－ 32.2	82.70	－ 2655	107855
124.05	－7	－309．0	－366．7	82.70	－30325	77530
140．5	8－3，4	222.5	－675．7	16.15	－11115	60.115
191.5	h－1，2	216.0	－453．2	51.00	－23095	43320
206.75	W－8	－281．2	－237．2	15.25	－ 3615	39705
223.5	h－3，4	210.0	－518．4	16.75	－ 8680	31025
274.5	i－1，2	20．1．0	－308．4	51.00	－15730	$15 ? 95$
289．45	＂习－9	－257．5	－10．4．4	14.95	－ 1560	13735
306.5	i－3，4	201.5	－361．9	17.05	－ 6160	7575
357.5	j－1，2	196.0	－160．4	51.00	－ 8180	－ 605
372.15	$\cdots-10$	-23.15	35.6	14.65	510	－ 95
389.5	j－3，4	191.0	－198．9	17.35	－ 3450	－ 3545

Moment caused by longitudinal chains：

$$
(127.0-117.0) 95.0=950 \mathrm{ft} . \mathrm{kips} .
$$

Figure 2.

DIAGRAM FOR AVERAGE WIND PRESSURE ON WALLS $P L A N$ OF WALLS

$$
\text { Figure } 6
$$

velocity pressures

0
0
0 PLAN OF WALLS

$$
\begin{aligned}
& \text { FIGURE } 6 \\
& \text { velocity pressures }
\end{aligned}
$$

DIAGRAM FOR AVERAGE WIND PRESSURE ON WALLS

DIAGRAM FOR AVERAGE WINO PRESSURE ON WILLS
PLAN OF WALLS
FIGURE 6.

Velocity pressures
AFTER A AMIRIKIAN

Figure 7.

Typical section thru wing Wall

Figure 86

BIBLIOGRAPHY

Frederick R. Harris, Inc.
"Report to The Burcau of Yards and Docks of Design Assumptions and "!ethods, Floating Dry Docks."

Frederick R. Harris, Inc.
"Advance Base Battloship Dry Dock Operating !!anual."
Navy Department, Burcau of Yards and Docks
"Navy Departmont Mooring fuide."
S. Timoshenko
"Strength of :iaterials, Part II"
(2)

INDLK

Catenary 1, 2, 5 Assumptions 2 Force Displacement Curves $3,5,6,7,8,26,34,35$ Formulas 2, 3, 4, Table I, 24, 25, 26, 34

Chain Ilongation 17,36
Chain Reactions $15-26,33$, Table 6 Accuracy of method used to determine $22,23,26,31,34$ Assumptions in method used to determine 17, 19

Computation 22, Table 6
Definitions 18
Development of methods used to determine 19, 20, 21
!!ethods used previously to determine $15,16,17,32$
Conclusions 32-36
Dock Description 10, 27
Dock Rigidity $17,35,36$
Loaded Structure 27-31
Mooring 1, 5, 6, 17, 32, 33
Recommendations 32-36
Rotation of Dock 2, 17, 19
Splice and Vingwall Cross-section 27
Stresses 28, 29, Table 8, 31, 34, 36
Assumptions for determining 29, 30
Wind Loads 9-14, 28, 32, 35, Table 3, Table 4 Distribution Curves 9

Assumptions 10
INDEX (cont'd)
Formula ll, Table 3, Table 4
Wingwall and Splice Cross-section 27


```
        Thesis
                                    7 4 7 3
s2 Saunders
            A method of inves-
        tigation of the
        strength in bending
        in the horizontal
        plane of an AFDB when
        subjected to lateral
        wind, current, or
        wave forces.
Thes is
                                    7 4 7 3
s2 Saunders
            A method of inves-
        tigation of the
        strength in bending
        in the horizontal
        plane of an AFDB when
        subjected to lateral
        wind, current, or
        wave forces.
```

